Постановка проблемы: «В 5 л крови человека может раствориться около 10 мл кислорода, а для удовлетворения потребности организма его нужно около 200 мл в 1 мин. Как организм человека получает нужное количество кислорода?»
Ожидаемый ответ: «Если кровь не обеспечивает потребностей организма человека в кислороде, связывая его физически, то есть растворяя в себе, значит, в крови должны быть вещества, способные химически связывать кислород и в виде соединений транспортировать его к тканям».
Действительно, такие химические вещества в крови есть, и они называются дыхательными пигментами.

Дыхательные пигменты и их значение
Дыхательные пигменты - это вещества крови и гемолимфы, обратимо связывающие молекулярный кислород. При высоких концентрациях кислорода пигмент легко его присоединяет, а при низких - быстро отдает.
По своей природе дыхательные пигменты - сложные белки, в состав которых помимо собственно белковой части входит еще и металл. Такие сложные белки называются металлопротеидами. В крови животных разных систематических групп присутствуют разные дыхательные пигменты. Например, у некоторых улиток и ракообразных гемолимфа содержит гемоцианин (медьсодержащий белок, окисленная форма которого имеет синий цвет, восстановленная - бесцветная), y головоногих моллюсков и некоторых кольчатых червей - гемоэритрин, а кровь некоторых червей содержит хлорокруонин (железосодержащий белок, окисленная форма которого имеет красный, а восстановленная - зеленый цвет). Ну а самым распространенным дыхательным пигментом у животных является гемоглобин.
Постановка проблемного вопроса: «Почему среди всех дыхательных пигментов наибольшее распространение получил гемоглобин?»
Ожидаемый ответ: «Наверное, по сравнению с другими пигментами гемоглобин может связывать больше кислорода».
Действительно, гемоглобин способен присоединять больше кислорода, чем другие дыхательные пигменты. Гемоглобин относится к железосодержащим пигментам. Он присутствует в крови некоторых моллюсков, кольчатых червей и всех позвоночных животных. Окисленная форма гемоглобина имеет оранжево-красный (алый) цвет (артериальная кровь), а восстановленная форма - пурпурно-красный цвет (венозная кровь).
Связывающая способность некоторых пигментов по отношению к кислороду приведена в таблице 1.
Таким образом, гемоглобин по сравнению с другими дыхательными пигментами может обратимо связать больше кислорода, то есть он обладает большей кислородной емкостью (кислородная емкость крови, или КЕК, - это максимальное количество кислорода, обратимо связываемое дыхательными пигментами). Поэтому в ходе эволюции выбор был сделан в пользу гемоглобина.

Кислородная емкость крови
у разных животных
Кислородная емкость крови у разных форм животных зависит от условий их обитания и образа жизни. Усложнение организмов в ходе эволюции, выход животных из воды на сушу, появление терморегуляции, возрастание интенсивности окисления были бы невозможны без повышения КЕК.
Постановка проблемного вопроса: «Каким образом в ходе эволюции животных была повышена кислородная емкость крови?»
Ожидаемый ответ: «КЕК можно повысить, увеличивая концентрацию гемоглобина в крови».
Действительно, повышая концентрацию гемоглобина в крови, можно увеличить КЕК. У большинства беспозвоночных животных (моллюски, некоторые кольчатые черви) гемоглобин растворен в плазме крови. По мере роста активности животных потребность в кислороде все возрастала, но дальнейшее увеличение концентрации дыхательного пигмента в плазме приводило к повышению вязкости крови и затрудняло ее передвижение по капиллярам, то есть ухудшало снабжение тканей кислородом.
Постановка проблемного вопроса: «Как же можно увеличить содержание гемоглобина в крови, не увеличивая ее вязкости?»
Ожидаемый ответ: «Пигмент может быть изолирован от плазмы путем «упаковки» в особые клетки».
Действительно, локализация пигмента в клетках дает возможность увеличить его содержание в крови без одновременного увеличения числа частиц в растворе, то есть без увеличения вязкости. У позвоночных животных гемоглобин находится в специальных клетках крови - эритроцитах.

Выполнение лабораторной работы
В ходе выполнения лабораторной работы предстоит выяснить, что представляют собой эритроциты, как они приспособлены к выполнению газовой (дыхательной) функции.

Инструктивная карточка
Тема «Изучение постоянных препаратов крови лягушки и человека, выявление особенностей строения эритроцитов человека в связи с выполняемыми функциями».
Оборудование: микроскопы, микропрепараты «Кровь лягушки» и «Кровь человека».
Ход работы
1. Исследуйте микропрепарат «Кровь лягушки» под микроскопом.
2. Опишите форму и строение эритроцитов лягушки, сделайте рисунок.
3. Рассмотрите микропрепарат «Кровь человека» под микроскопом. Найдите эритроциты и зарисуйте их в тетради.
4. Сравните эритроциты лягушки и человека, заполните таблицу 2.
5. Сделайте вывод о том, каково значение выявленных различий в организации эритроцитов лягушки и человека.
Обсуждение результатов лабораторной работы.
В ходе лабораторной работы учащиеся должны выявить следующие особенности эритроцитов человека по сравнению с лягушкой:
1. Очень малые размеры - их диаметр составляет 7-8 мкм и приблизительно равен диаметру кровеносных капилляров. Эритроциты же лягушки очень велики - до 22,8 мкм в диаметре, но их количество невелико - 0,38 млн в 1 мм3 крови.
2. Большая концентрация эритроцитов в крови человека и большая суммарная площадь поверхности (в 1 мм3 крови содержится около 5 млн эритроцитов, суммарная площадь их поверхности составляет около 3 тыс. м2).
3. Эритроциты всех млекопитающих, кроме верблюдов, имеют необычную форму двояковогнутого диска. Это увеличивает площадь поверхности эритроцита.
4. Отсутствие ядер в зрелых эритроцитах человека (молодые эритроциты ядра имеют, но они в дальнейшем исчезают) позволяет разместить больше молекул гемоглобина в эритроците (в зрелом эритроците их около 265х106).
Таким образом, строение эритроцитов человека идеально подходит для выполнения ими газовой функции. Благодаря особенностям строения эритроцитов кровь быстро и в больших количествах насыщается кислородом и доставляет его в химически связанном виде в ткани. А это одна из причин (наряду с четырехкамерным сердцем, полным разделением венозного и артериального кровотоков, прогрессивными изменениями в строении легких и т. д.) гомойотермности (теплокровности) млекопитающих, в том числе и человека.

Образование и гибель эритроцитов. Малокровие
Процесс образования эритроцитов носит название эритропоэза (а процесс кроветворения называется гемопоэзом), ткань, в которой он происходит, называют кроветворной (гемопоэтической).
Постановка вопроса: «Где расположена кроветворная ткань?»
Ожидаемый ответ (на основе ранее изученного материала): «У младенцев кроветворная ткань содержится во всех костях, а у взрослых людей - в так называемых плоских костях (кости черепа, ребра, грудина, позвонки, ключицы, лопатки)».
Продолжительность жизни эритроцитов у взрослых людей составляет около 3 месяцев, после чего они разрушаются в печени или селезенке. Белковые компоненты эритроцита расщепляются на составляющие их аминокислоты, а железо удерживается печенью и хранится в ней в составе белка ферритина. Железо может в дальнейшем использоваться при образовании новых эритроцитов.
Каждую секунду в организме человека разрушается от 2 до 10 млн эритроцитов. Скорость paспада эритроцитов и замещения их новыми зависит от содержания в атмосфере кислорода, доступного для переноса кровью. Низкое содержание кислорода стимулирует эритропоэз. Благодаря этому оказывается возможной адаптация человека, например, к пониженному содержанию кислорода в горах.

​Олег ПЕТУНИН, заведующий кафедрой естественно-научных и математических дисциплин Кузбасского регионального ИПКиПРО, доктор педагогических наук, профессор, отличник народного просвещения, победитель Всероссийского конкурса «Учитель года России»-1996